Is Family Screening Improved by Genetic Testing of Familial Hypercholesterolemia

Overview

To test the hypothesis that in patients with a clinical diagnosis of familial hypercholesterolemia (FH), genetic testing and identification of a causative mutation might enhance the success of family-based cascade screening.

Study Type

  • Study Type: Interventional
  • Study Design
    • Allocation: Randomized
    • Intervention Model: Parallel Assignment
    • Primary Purpose: Other
    • Masking: None (Open Label)
  • Study Primary Completion Date: December 1, 2016

Detailed Description

To examine the impact of genetic testing on the efficiency of cascade screening for FH, patients with suspected FH or a clinical diagnosis of FH have been randomized to genetic testing or standard of care with lipid testing alone. After systematic encouragement of family enrollment, as a primary endpoint, the compared the number of probands with relatives enrolled in each group one year after results were returned to probands. The secondary endpoints examined include the number of relatives enrolled within 52 weeks of the genetic counseling call and the number of relatives diagnosed with FH through the study. Exploratory subgroup analyses were conducted stratifying the cohort by randomization/genetic test result. Further exploratory analyses compared probands' perceptions about high cholesterol diagnosis at baseline and at 20 weeks from enrollment

Interventions

  • Other: Standard of Care
    • Randomized to standard of care with lipid testing only.
  • Other: Genetic Testing
    • Randomized to genetic testing.

Arms, Groups and Cohorts

  • Other: Standard of Care
    • Participants with suspected FH (LDL-C greater than 220 mg/dL) or a previous clinical diagnosis of FH and randomized to standard of care with lipid testing only.
  • Other: Genetic Testing
    • Participants with suspected FH (LDL-C greater than 220 mg/dL) or a previous clinical diagnosis of FH randomized to genetic testing

Clinical Trial Outcome Measures

Primary Measures

  • Number of probands with relatives enrolled
    • Time Frame: 52 weeks after genetic/lipid testing results are returned to probands
    • The primary outcome of this study was the number of probands with family members enrolled in the study within 52 weeks of results being returned to probands. Investigators compared the proportion of probands with a relative enrolled in the genetic testing group with the proportion of probands with a relative enrolled in the usual care group (lipid testing only). Relative enrolment was defined as the return of a test kit within the study time frame.

Secondary Measures

  • The number of relatives enrolled in the study 52 weeks after results were returned to probands
    • Time Frame: 52 weeks after results are returned to probands
    • The number of relatives enrolled in the study within 52 weeks of results being returned to probands. Investigators compared the number of relatives enrolled in the genetic testing group with the number of relatives enrolled in the usual care group (lipid testing only). Relative enrolment was defined as the return of a test kit within the study time frame.
  • The number of family members diagnosed with FH 52 weeks after results were returned to probands
    • Time Frame: 52 weeks after results are returned to probands
    • The number of family members diagnosed with FH within 52 weeks of results being returned to probands. Investigators compared the number of enrolled relatives diagnosed with FH in the genetic testing group with the number of enrolled relatives diagnosed with FH in the usual care group (lipid testing only). This diagnosis had to be made through the study. The number of enrolled relatives diagnosed with FH in each group was expressed as the new case per index case ratio (relatives diagnosed with FH/total number of index case). Relative enrolment was defined as the return of a test kit within the study time frame. The diagnosis of FH was based on meeting either genetic or the Make Early Diagnosis To Prevent Early Deaths (MEDPED) clinical criteria

Participating in This Clinical Trial

Inclusion Criteria

  • For probands, inclusion criteria are as follows: 1. LDL cholesterol > 220 mg/dL or a previous clinical diagnosis of FH 2. Aged 18 years or older 3. Ability to provide informed consent 4. Willingness/ability to contact a minimum of 2 biological relatives about the study Exclusion Criteria:

  • For family members of probands, inclusion criteria are as follows: 1. Willingness to participate in the study 2. Age 10 or older 3. Ability to give informed consent/assent

Gender Eligibility: All

Minimum Age: 10 Years

Maximum Age: N/A

Are Healthy Volunteers Accepted: No

Investigator Details

  • Lead Sponsor
    • University of Pennsylvania
  • Provider of Information About this Clinical Study
    • Sponsor
  • Overall Official(s)
    • Daniel J Rader, MD, Principal Investigator, University of Pennsylvania

References

Abul-Husn NS, Manickam K, Jones LK, Wright EA, Hartzel DN, Gonzaga-Jauregui C, O'Dushlaine C, Leader JB, Lester Kirchner H, Lindbuchler DM, Barr ML, Giovanni MA, Ritchie MD, Overton JD, Reid JG, Metpally RP, Wardeh AH, Borecki IB, Yancopoulos GD, Baras A, Shuldiner AR, Gottesman O, Ledbetter DH, Carey DJ, Dewey FE, Murray MF. Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science. 2016 Dec 23;354(6319):aaf7000. doi: 10.1126/science.aaf7000.

Benn M, Watts GF, Tybjaerg-Hansen A, Nordestgaard BG. Familial hypercholesterolemia in the danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J Clin Endocrinol Metab. 2012 Nov;97(11):3956-64. doi: 10.1210/jc.2012-1563. Epub 2012 Aug 14. Erratum In: J Clin Endocrinol Metab. 2014 Dec;99(12):4758-9.

Mortensen MB, Kulenovic I, Klausen IC, Falk E. Familial hypercholesterolemia among unselected contemporary patients presenting with first myocardial infarction: Prevalence, risk factor burden, and impact on age at presentation. J Clin Lipidol. 2016 Sep-Oct;10(5):1145-1152.e1. doi: 10.1016/j.jacl.2016.06.002. Epub 2016 Jun 14.

De Backer G, Besseling J, Chapman J, Hovingh GK, Kastelein JJ, Kotseva K, Ray K, Reiner Z, Wood D, De Bacquer D; EUROASPIRE Investigators. Prevalence and management of familial hypercholesterolaemia in coronary patients: An analysis of EUROASPIRE IV, a study of the European Society of Cardiology. Atherosclerosis. 2015 Jul;241(1):169-75. doi: 10.1016/j.atherosclerosis.2015.04.809. Epub 2015 Apr 30.

Wald DS, Bangash FA, Bestwick JP. Prevalence of DNA-confirmed familial hypercholesterolaemia in young patients with myocardial infarction. Eur J Intern Med. 2015 Mar;26(2):127-30. doi: 10.1016/j.ejim.2015.01.014. Epub 2015 Feb 11.

Pang J, Poulter EB, Bell DA, Bates TR, Jefferson VL, Hillis GS, Schultz CJ, Watts GF. Frequency of familial hypercholesterolemia in patients with early-onset coronary artery disease admitted to a coronary care unit. J Clin Lipidol. 2015 Sep-Oct;9(5):703-8. doi: 10.1016/j.jacl.2015.07.005. Epub 2015 Jul 18.

Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, Wiklund O, Hegele RA, Raal FJ, Defesche JC, Wiegman A, Santos RD, Watts GF, Parhofer KG, Hovingh GK, Kovanen PT, Boileau C, Averna M, Boren J, Bruckert E, Catapano AL, Kuivenhoven JA, Pajukanta P, Ray K, Stalenhoef AF, Stroes E, Taskinen MR, Tybjaerg-Hansen A; European Atherosclerosis Society Consensus Panel. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013 Dec;34(45):3478-90a. doi: 10.1093/eurheartj/eht273. Epub 2013 Aug 15. Erratum In: Eur Heart J. 2020 Dec 14;41(47):4517.

Programme WHOHG. Familial hypercholesterolaemia (FH) : report of a second WHO consultation, Geneva, 4 September 1998. 1999:This report is dedicated to the memory of Professo.

CDC. Genomic tests by levels of evidence. Centers for Disease Control Office of Public Health Genomics. http://www.cdc.gov/genomics/gtesting/file/print/tier.pdf. Published 2013. Accessed August 23, 2016.

Knowles JW, Rader DJ, Khoury MJ. Cascade Screening for Familial Hypercholesterolemia and the Use of Genetic Testing. JAMA. 2017 Jul 25;318(4):381-382. doi: 10.1001/jama.2017.8543. No abstract available.

Sturm AC, Knowles JW, Gidding SS, Ahmad ZS, Ahmed CD, Ballantyne CM, Baum SJ, Bourbon M, Carrie A, Cuchel M, de Ferranti SD, Defesche JC, Freiberger T, Hershberger RE, Hovingh GK, Karayan L, Kastelein JJP, Kindt I, Lane SR, Leigh SE, Linton MF, Mata P, Neal WA, Nordestgaard BG, Santos RD, Harada-Shiba M, Sijbrands EJ, Stitziel NO, Yamashita S, Wilemon KA, Ledbetter DH, Rader DJ; Convened by the Familial Hypercholesterolemia Foundation. Clinical Genetic Testing for Familial Hypercholesterolemia: JACC Scientific Expert Panel. J Am Coll Cardiol. 2018 Aug 7;72(6):662-680. doi: 10.1016/j.jacc.2018.05.044.

Umans-Eckenhausen MA, Defesche JC, Sijbrands EJ, Scheerder RL, Kastelein JJ. Review of first 5 years of screening for familial hypercholesterolaemia in the Netherlands. Lancet. 2001 Jan 20;357(9251):165-8. doi: 10.1016/S0140-6736(00)03587-X.

Leren TP, Finborud TH, Manshaus TE, Ose L, Berge KE. Diagnosis of familial hypercholesterolemia in general practice using clinical diagnostic criteria or genetic testing as part of cascade genetic screening. Community Genet. 2008;11(1):26-35. doi: 10.1159/000111637. Epub 2008 Jan 15.

Nherera L, Marks D, Minhas R, Thorogood M, Humphries SE. Probabilistic cost-effectiveness analysis of cascade screening for familial hypercholesterolaemia using alternative diagnostic and identification strategies. Heart. 2011 Jul;97(14):1175-81. doi: 10.1136/hrt.2010.213975.

deGoma EM, Ahmad ZS, O'Brien EC, Kindt I, Shrader P, Newman CB, Pokharel Y, Baum SJ, Hemphill LC, Hudgins LC, Ahmed CD, Gidding SS, Duffy D, Neal W, Wilemon K, Roe MT, Rader DJ, Ballantyne CM, Linton MF, Duell PB, Shapiro MD, Moriarty PM, Knowles JW. Treatment Gaps in Adults With Heterozygous Familial Hypercholesterolemia in the United States: Data From the CASCADE-FH Registry. Circ Cardiovasc Genet. 2016 Jun;9(3):240-9. doi: 10.1161/CIRCGENETICS.116.001381. Epub 2016 Mar 24.

Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Wilson PW; American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):2889-934. doi: 10.1016/j.jacc.2013.11.002. Epub 2013 Nov 12. No abstract available. Erratum In: J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):3024-3025. J Am Coll Cardiol. 2015 Dec 22;66(24):2812.

Clinical trials entries are delivered from the US National Institutes of Health and are not reviewed separately by this site. Please see the identifier information above for retrieving further details from the government database.

At TrialBulletin.com, we keep tabs on over 200,000 clinical trials in the US and abroad, using medical data supplied directly by the US National Institutes of Health. Please see the About and Contact page for details.