Prophylaxis of Periprosthetic Joint Infections With Calcium Sulfate Beads in Patients With Non-modifiable Risk Factors.

Overview

To demonstrate the prophylactic effect of calcium sulfate beads loaded with antibiotic in patients with non-modifiable risk factors that will undergo a hip or knee joint replacement, comparing with a control group. To know the economic cost generated in antibiotic prophylaxis with calcium sulfate beads in patients undergoing hip or knee joint replacement with non-modifiable risk factors.

Full Title of Study: “Application of Antibiotic Loaded Calcium Sulfate as Prophylaxis for Patients With Non Modifiable Risk Factors for Periprosthetic Joint Infections”

Study Type

  • Study Type: Interventional
  • Study Design
    • Allocation: Randomized
    • Intervention Model: Parallel Assignment
    • Primary Purpose: Prevention
    • Masking: Single (Participant)
  • Study Primary Completion Date: April 22, 2020

Detailed Description

Since joint replacement procedures have been successful in recent decades, every year the number of implanted prostheses is increasing, however, at the same time, orthopaedic surgeons also find complications inherent to this surgery, where peri-prosthetic infection results to be the most devastating. In order to find a solution to this terrible complication, prophylactic and therapeutic measures have been implemented, emerging techniques where the application of local antibiotics in the surgical site has turned out to be a promising concept. It has been shown that the non-modifiable risk factors of patients undergoing joint replacement surgery increase the risk of infection rate. Therefore, the identification of risk factors, decolonization and the prophylactic administration of antibiotics allow an effective reduction of periprosthetic infection. In order to reduce and, as far as posible, avoid periprosthetic infections in participants undergo knee or hip joint replacement with non-modifiable risk factors, the prophylactic use of calcium sulphate loaded with antibiotic for local application is proposed.

Interventions

  • Device: Antibiotic local prophylaxis with medicated calcium sulfate beads
    • Antibiotic prophylaxis in patients with non-modifiable risk factors for periprosthetic joint infection
  • Procedure: Classical parenteral antibiotic prophylaxis
    • Antibiotic prophylaxis in patients with non-modifiable risk factors for periprosthetic joint infection

Arms, Groups and Cohorts

  • Experimental: Calcium sulfate Group
    • Group of members that will be submitted to prophylaxis with medicated calcium sulfate beads for hip or knee joint replacement
  • Active Comparator: Control Group
    • Group of members that will be submitted to classic prophylaxis for hip or knee joint replacement

Clinical Trial Outcome Measures

Primary Measures

  • Partipants Achieving a Lower Hip or Knee Periprosthetic Joint Infection Rate With Local Versus Conventional Intravenous Antibiotic Prophilaxys, Measured With CRP, ERS in Serum and Sinovial Fluid Leukocytes , Over the 12-week Observation Period.
    • Time Frame: Day 5, Weeks 4, 8, and 12
    • Acute periprosthetic knee or hip infection was determined using CRP and ESR serum biomarkers, which are the most commonly published serum biomarkers in periprosthetic joint infection literature. The cut off point for CRP was considered 93mg/L and 44mm/hr for ESR. The serum biomarker sample was taken and evaluated on day 5 and weeks 4, 8 and 12. Leukocytes in synovial fluid are among the criteria for definition of periprosthetic joint infection with a cut off point above 12,800 cells/µL and were only included if serum biomarkers were elevated.

Secondary Measures

  • Length of Stay as an Indicator of the Hospital Economic Burden
    • Time Frame: Surgical procedure day to hospital discharge.
    • The length of stay is an important indicator of efficiency and hospital economic burden. The reduction in number of hospitalization days results in lower risk of infection and less medication side effects and decreased need of hospital supplies. The difference in the average days of hospitalization between both groups indirectly represents the economic cost spent by the hospital.

Participating in This Clinical Trial

Inclusion Criteria

  • patients with fracture or osteoarthrosis of the hip or knee that require treatment by joint replacement. – patients who have any of the Non-Modifiable Risk Factors prior to surgery or during transoperative period. – Patients entitled to the ISSEMyM (Instituto de Seguridad Social del Estado de Mexico y Municipios) Exclusion Criteria:

  • Patients that lose their validity of institutional rights and do not follow up – Patients who die during the study due to other causes not related to the orthopedic procedure. – Patients who do not have any of the risk factors for periprosthetic infection – Patients allergic to vancomycin or ceftriaxone.

Gender Eligibility: All

Minimum Age: 60 Years

Maximum Age: N/A

Are Healthy Volunteers Accepted: No

Investigator Details

  • Lead Sponsor
    • Hospital Regional Tlalnepantla
  • Provider of Information About this Clinical Study
    • Principal Investigator: Julio Carlos Velez de Lachica, Md. High Specialty Associate Professor of the Joint Surgery Course. – Hospital Regional Tlalnepantla

References

Ong KL, Kurtz SM, Lau E, Bozic KJ, Berry DJ, Parvizi J. Prosthetic joint infection risk after total hip arthroplasty in the Medicare population. J Arthroplasty. 2009 Sep;24(6 Suppl):105-9. doi: 10.1016/j.arth.2009.04.027. Epub 2009 Jun 2.

Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res. 2008 Jul;466(7):1710-5. doi: 10.1007/s11999-008-0209-4. Epub 2008 Apr 18.

Wahl P, Guidi M, Benninger E, Ronn K, Gautier E, Buclin T, Magnin JL, Livio F. The levels of vancomycin in the blood and the wound after the local treatment of bone and soft-tissue infection with antibiotic-loaded calcium sulphate as carrier material. Bone Joint J. 2017 Nov;99-B(11):1537-1544. doi: 10.1302/0301-620X.99B11.BJJ-2016-0298.R3.

Wahl P, Livio F, Jacobi M, Gautier E, Buclin T. Systemic exposure to tobramycin after local antibiotic treatment with calcium sulphate as carrier material. Arch Orthop Trauma Surg. 2011 May;131(5):657-62. doi: 10.1007/s00402-010-1192-2. Epub 2010 Oct 12.

Reed EE, Johnston J, Severing J, Stevenson KB, Deutscher M. Nephrotoxicity Risk Factors and Intravenous Vancomycin Dosing in the Immediate Postoperative Period Following Antibiotic-Impregnated Cement Spacer Placement. Ann Pharmacother. 2014 Aug;48(8):962-969. doi: 10.1177/1060028014535360. Epub 2014 May 13.

Horii C, Yamazaki T, Oka H, Azuma S, Ogihara S, Okazaki R, Kawamura N, Takano Y, Morii J, Takeshita Y, Maruyama T, Yamakawa K, Murakami M, Oshima Y, Tanaka S. Does intrawound vancomycin powder reduce surgical site infection after posterior instrumented spinal surgery? A propensity score-matched analysis. Spine J. 2018 Dec;18(12):2205-2212. doi: 10.1016/j.spinee.2018.04.015. Epub 2018 Apr 26.

Sweet FA, Roh M, Sliva C. Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: efficacy, drug levels, and patient outcomes. Spine (Phila Pa 1976). 2011 Nov 15;36(24):2084-8. doi: 10.1097/BRS.0b013e3181ff2cb1.

Zebala LP, Chuntarapas T, Kelly MP, Talcott M, Greco S, Riew KD. Intrawound vancomycin powder eradicates surgical wound contamination: an in vivo rabbit study. J Bone Joint Surg Am. 2014 Jan 1;96(1):46-51. doi: 10.2106/JBJS.L.01257.

Whiteside LA, Peppers M, Nayfeh TA, Roy ME. Methicillin-resistant Staphylococcus aureus in TKA treated with revision and direct intra-articular antibiotic infusion. Clin Orthop Relat Res. 2011 Jan;469(1):26-33. doi: 10.1007/s11999-010-1313-9.

Buchholz HW, Engelbrecht H. [Depot effects of various antibiotics mixed with Palacos resins]. Chirurg. 1970 Nov;41(11):511-5. No abstract available. German.

Bennett-Guerrero E, Pappas TN, Koltun WA, Fleshman JW, Lin M, Garg J, Mark DB, Marcet JE, Remzi FH, George VV, Newland K, Corey GR; SWIPE 2 Trial Group. Gentamicin-collagen sponge for infection prophylaxis in colorectal surgery. N Engl J Med. 2010 Sep 9;363(11):1038-49. doi: 10.1056/NEJMoa1000837. Epub 2010 Aug 4. Erratum In: N Engl J Med. 2010 Dec 23;363(26):2573.

Birgand G, Radu C, Alkhoder S, Al Attar N, Raffoul R, Dilly MP, Nataf P, Lucet JC. Does a gentamicin-impregnated collagen sponge reduce sternal wound infections in high-risk cardiac surgery patients? Interact Cardiovasc Thorac Surg. 2013 Feb;16(2):134-41. doi: 10.1093/icvts/ivs449. Epub 2012 Oct 31.

KOVACEVIC B. [Problem of hematogenous osteomyelitis]. Langenbecks Arch Klin Chir Ver Dtsch Z Chir. 1953;276:432-43. No abstract available. Undetermined Language.

Fischer G, Seidler W. [Results in the treatment of osteomyelitic bone cavities using antibiotic gypsum medullary plombage]. Dtsch Gesundheitsw. 1971 Nov 4;26(45):2105-7. No abstract available. German.

Mackey D, Varlet A, Debeaumont D. Antibiotic loaded plaster of Paris pellets: an in vitro study of a possible method of local antibiotic therapy in bone infection. Clin Orthop Relat Res. 1982 Jul;(167):263-8.

Varlet A, Dauchy P. [Plaster of Paris pellets containing antibiotics in the treatment of bone infection. New combinations of plaster with antibiotics]. Rev Chir Orthop Reparatrice Appar Mot. 1983;69(3):239-44. French.

Dahners LE, Funderburk CH. Gentamicin-loaded plaster of Paris as a treatment of experimental osteomyelitis in rabbits. Clin Orthop Relat Res. 1987 Jun;(219):278-82.

Evrard J, Kerri O, Martini M, Conort O. [Treatment of bone infection by plaster of Paris pellets impregnated with antibiotics]. Pathol Biol (Paris). 1990 Jun;38(5 ( Pt 2)):543-7. French.

Mousset B, Benoit MA, Bouillet R, Gillard J. [Plaster of Paris: a carrier for antibiotics in the treatment of bone infections]. Acta Orthop Belg. 1993;59(3):239-48. French.

Sulo I. [Gentamycin impregnated plaster beads in the treatment of bone infection]. Rev Chir Orthop Reparatrice Appar Mot. 1993;79(4):299-305. French.

Gitelis S, Brebach GT. The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg (Hong Kong). 2002 Jun;10(1):53-60. doi: 10.1177/230949900201000110.

Meza-Lopez LR, Cigarroa-Lopez JA, Hernandez-Meneses S, Castan-Flores DA, Mendoza-Zavala GH, Barragan-Zamora JA, Carrillo-Munoz A, Munguia-Canales DA. [Dissolvable and extended release antibiotic beads in mediastinoscopic management of mediastinitis after heart transplantation]. Arch Cardiol Mex. 2017 Apr-Jun;87(2):182-186. doi: 10.1016/j.acmx.2017.01.006. Epub 2017 Mar 2. No abstract available. Spanish.

Aiken SS, Cooper JJ, Florance H, Robinson MT, Michell S. Local release of antibiotics for surgical site infection management using high-purity calcium sulfate: an in vitro elution study. Surg Infect (Larchmt). 2015 Feb;16(1):54-61. doi: 10.1089/sur.2013.162. Epub 2014 Aug 22.

Howlin RP, Brayford MJ, Webb JS, Cooper JJ, Aiken SS, Stoodley P. Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob Agents Chemother. 2015 Jan;59(1):111-20. doi: 10.1128/AAC.03676-14. Epub 2014 Oct 13.

Howlin RP, Winnard C, Angus EM, Frapwell CJ, Webb JS, Cooper JJ, Aiken SS, Bishop JY, Stoodley P. Prevention of Propionibacterium acnes biofilm formation in prosthetic infections in vitro. J Shoulder Elbow Surg. 2017 Apr;26(4):553-563. doi: 10.1016/j.jse.2016.09.042. Epub 2016 Dec 15.

Howlin RP, Winnard C, Frapwell CJ, Webb JS, Cooper JJ, Aiken SS, Stoodley P. Biofilm prevention of gram-negative bacterial pathogens involved in periprosthetic infection by antibiotic-loaded calcium sulfate beads in vitro. Biomed Mater. 2016 Dec 2;12(1):015002. doi: 10.1088/1748-605X/12/1/015002.

Kallala R, Harris WE, Ibrahim M, Dipane M, McPherson E. Use of Stimulan absorbable calcium sulphate beads in revision lower limb arthroplasty: Safety profile and complication rates. Bone Joint Res. 2018 Nov 3;7(10):570-579. doi: 10.1302/2046-3758.710.BJR-2017-0319.R1. eCollection 2018 Oct.

Lum ZC, Pereira GC. Local bio-absorbable antibiotic delivery in calcium sulfate beads in hip and knee arthroplasty. J Orthop. 2018 May 7;15(2):676-678. doi: 10.1016/j.jor.2018.05.001. eCollection 2018 Jun.

Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic burden of periprosthetic joint infection in the United States. J Arthroplasty. 2012 Sep;27(8 Suppl):61-5.e1. doi: 10.1016/j.arth.2012.02.022. Epub 2012 May 2.

Parvizi J, Pawasarat IM, Azzam KA, Joshi A, Hansen EN, Bozic KJ. Periprosthetic joint infection: the economic impact of methicillin-resistant infections. J Arthroplasty. 2010 Sep;25(6 Suppl):103-7. doi: 10.1016/j.arth.2010.04.011. Epub 2010 May 31.

Parvizi J, Azzam K, Ghanem E, Austin MS, Rothman RH. Periprosthetic infection due to resistant staphylococci: serious problems on the horizon. Clin Orthop Relat Res. 2009 Jul;467(7):1732-9. doi: 10.1007/s11999-009-0857-z. Epub 2009 May 1.

Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty. 2008 Oct;23(7):984-91. doi: 10.1016/j.arth.2007.10.017. Epub 2008 Apr 10.

Almeida Herrero F, Lopez Lozano R, Silvestre Munoz A. [Descriptive analysis of C-Reactive values after uncomplicated total hip and knee arthroplasty]. Acta Ortop Mex. 2008 Mar-Apr;22(2):80-4. Spanish.

Bilgen O, Atici T, Durak K, Karaeminogullari, Bilgen MS. C-reactive protein values and erythrocyte sedimentation rates after total hip and total knee arthroplasty. J Int Med Res. 2001 Jan-Feb;29(1):7-12. doi: 10.1177/147323000102900102.

Greidanus NV, Masri BA, Garbuz DS, Wilson SD, McAlinden MG, Xu M, Duncan CP. Use of erythrocyte sedimentation rate and C-reactive protein level to diagnose infection before revision total knee arthroplasty. A prospective evaluation. J Bone Joint Surg Am. 2007 Jul;89(7):1409-16. doi: 10.2106/JBJS.D.02602.

Hashmi FR, Barlas K, Mann CF, Howell FR. Staged bilateral hip or knee arthroplasties. J Orthop Surg (Hong Kong). 2007 Aug;15(2):159-62. doi: 10.1177/230949900701500206.

Larsson S, Thelander U, Friberg S. C-reactive protein (CRP) levels after elective orthopedic surgery. Clin Orthop Relat Res. 1992 Feb;(275):237-42.

Nazem K, Motififard M, Yousefian M. Variations in ESR and CRP in total knee arthroplasty and total hip arthroplasty in Iranian patients from 2009 to 2011. Adv Biomed Res. 2016 Aug 30;5:148. doi: 10.4103/2277-9175.187403. eCollection 2016.

Park KK, Kim TK, Chang CB, Yoon SW, Park KU. Normative Temporal Values of CRP and ESR in Unilateral and Staged Bilateral TKA. Clin Orthop Relat Res. 2008 Jan;466(1):179-88. doi: 10.1007/s11999-007-0001-x. Epub 2008 Jan 3.

Parvizi J, Ghanem E, Sharkey P, Aggarwal A, Burnett RS, Barrack RL. Diagnosis of infected total knee: findings of a multicenter database. Clin Orthop Relat Res. 2008 Nov;466(11):2628-33. doi: 10.1007/s11999-008-0471-5. Epub 2008 Sep 10.

White J, Kelly M, Dunsmuir R. C-reactive protein level after total hip and total knee replacement. J Bone Joint Surg Br. 1998 Sep;80(5):909-11. doi: 10.1302/0301-620x.80b5.8708.

Yi PH, Cross MB, Moric M, Sporer SM, Berger RA, Della Valle CJ. The 2013 Frank Stinchfield Award: Diagnosis of infection in the early postoperative period after total hip arthroplasty. Clin Orthop Relat Res. 2014 Feb;472(2):424-9. doi: 10.1007/s11999-013-3089-1.

Zimmerli W. Clinical presentation and treatment of orthopaedic implant-associated infection. J Intern Med. 2014 Aug;276(2):111-9. doi: 10.1111/joim.12233.

Arnold WV, Shirtliff ME, Stoodley P. Bacterial biofilms and periprosthetic infections. J Bone Joint Surg Am. 2013 Dec 18;95(24):2223-9. doi: 10.2106/JBJS.2223. No abstract available.

McConoughey SJ, Howlin R, Granger JF, Manring MM, Calhoun JH, Shirtliff M, Kathju S, Stoodley P. Biofilms in periprosthetic orthopedic infections. Future Microbiol. 2014;9(8):987-1007. doi: 10.2217/fmb.14.64. Erratum In: Future Microbiol. 2014;9(10):1234.

Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018 Jul;16(7):397-409. doi: 10.1038/s41579-018-0019-y.

Klemm K. [Gentamicin-PMMA-beads in treating bone and soft tissue infections (author's transl)]. Zentralbl Chir. 1979;104(14):934-42. German.

Nelson CL, Jones RB, Wingert NC, Foltzer M, Bowen TR. Sonication of antibiotic spacers predicts failure during two-stage revision for prosthetic knee and hip infections. Clin Orthop Relat Res. 2014 Jul;472(7):2208-14. doi: 10.1007/s11999-014-3571-4. Erratum In: Clin Orthop Relat Res. 2014 Jul;472(7):2307.

Neut D, van de Belt H, Stokroos I, van Horn JR, van der Mei HC, Busscher HJ. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother. 2001 Jun;47(6):885-91. doi: 10.1093/jac/47.6.885.

Tunney MM, Ramage G, Patrick S, Nixon JR, Murphy PG, Gorman SP. Antimicrobial susceptibility of bacteria isolated from orthopedic implants following revision hip surgery. Antimicrob Agents Chemother. 1998 Nov;42(11):3002-5. doi: 10.1128/AAC.42.11.3002.

Chang CC, Merritt K. Microbial adherence on poly(methyl methacrylate) (PMMA) surfaces. J Biomed Mater Res. 1992 Feb;26(2):197-207. doi: 10.1002/jbm.820260206.

Saginur R, Stdenis M, Ferris W, Aaron SD, Chan F, Lee C, Ramotar K. Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrob Agents Chemother. 2006 Jan;50(1):55-61. doi: 10.1128/AAC.50.1.55-61.2006.

van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop Scand. 2001 Dec;72(6):557-71. doi: 10.1080/000164701317268978.

Winkler H. Treatment of chronic orthopaedic infection. EFORT Open Rev. 2017 May 11;2(5):110-116. doi: 10.1302/2058-5241.2.160063. eCollection 2017 May.

Zhu Y, Zhang F, Chen W, Liu S, Zhang Q, Zhang Y. Risk factors for periprosthetic joint infection after total joint arthroplasty: a systematic review and meta-analysis. J Hosp Infect. 2015 Feb;89(2):82-9. doi: 10.1016/j.jhin.2014.10.008. Epub 2014 Dec 4.

Cordero-Ampuero J, de Dios M. What are the risk factors for infection in hemiarthroplasties and total hip arthroplasties? Clin Orthop Relat Res. 2010 Dec;468(12):3268-77. doi: 10.1007/s11999-010-1411-8.

Namba RS, Inacio MC, Paxton EW. Risk factors associated with deep surgical site infections after primary total knee arthroplasty: an analysis of 56,216 knees. J Bone Joint Surg Am. 2013 May 1;95(9):775-82. doi: 10.2106/JBJS.L.00211.

Neut D, van de Belt H, van Horn JR, van der Mei HC, Busscher HJ. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials. 2003 May;24(10):1829-31. doi: 10.1016/s0142-9612(02)00614-2.

Wilson KJ, Cierny G, Adams KR, Mader JT. Comparative evaluation of the diffusion of tobramycin and cefotaxime out of antibiotic-impregnated polymethylmethacrylate beads. J Orthop Res. 1988;6(2):279-86. doi: 10.1002/jor.1100060216.

Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012 Oct-Dec;2(4):176-94. doi: 10.4161/biom.22905.

Rimondini L, Fini M, Giardino R. The microbial infection of biomaterials: A challenge for clinicians and researchers. A short review. J Appl Biomater Biomech. 2005 Jan-Apr;3(1):1-10.

Kurtz SM, Lau EC, Son MS, Chang ET, Zimmerli W, Parvizi J. Are We Winning or Losing the Battle With Periprosthetic Joint Infection: Trends in Periprosthetic Joint Infection and Mortality Risk for the Medicare Population. J Arthroplasty. 2018 Oct;33(10):3238-3245. doi: 10.1016/j.arth.2018.05.042. Epub 2018 Jun 1.

Aujla RS, Esler CN. Total Knee Arthroplasty for Osteoarthritis in Patients Less Than Fifty-Five Years of Age: A Systematic Review. J Arthroplasty. 2017 Aug;32(8):2598-2603.e1. doi: 10.1016/j.arth.2017.02.069. Epub 2017 Mar 3.

Clinical trials entries are delivered from the US National Institutes of Health and are not reviewed separately by this site. Please see the identifier information above for retrieving further details from the government database.

At TrialBulletin.com, we keep tabs on over 200,000 clinical trials in the US and abroad, using medical data supplied directly by the US National Institutes of Health. Please see the About and Contact page for details.